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Scaling and exotic regimes in decaying Burgers turbulence
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Abstract. We analyse the stochastic scaling laws arising in the invicid limit of the decaying
solutions of the Burgers equation. The linear scaling of the velocity structure functions is shown
to reflect the domination by shocks of the long-time asymptotics. We exhibit new self-similar
statistics of solutions describing phases with diluted shocks. Some speculations are included on
the nature of systems whose large time behaviour is described by the new statistics.

1. Introduction

The Burgers equation, a version of the Navier–Stokes equation without pressure, takes in
the 1+ 1-dimensions the form

∂tu+ u∂xu− ν∂2
xu = 0 (1)

whereu = u(x, t) is the velocity field. We have not included the force term since we shall
be interested in the free decay of initial data. Although we shall stick to the one-dimensional
space, most of the following can be generalized to higher dimensions. We are interested
in statistical properties of the velocity field at timet > 0, given the statistics of random
initial data. Equation (1) has theu(t, x) 7→ −u(t,−x) symmetry which, if respected by
the statistics of the initial conditions, will persist at all times. The problem is to evaluate
the n-point correlation functions〈∏j u(xj , t)〉 at equal time in the invicid limitν → 0.
At large time these correlation functions are expected to flow towards some ‘universal’
functions manifesting a self-similar character. In other words〈 n∏

j=1

u(xj , t)

〉
' un(t)Bn

(
xj

l(t)

)
for t large (2)

with l(t) andu(t) ' ∂t l(t) being the characteristic length and the characteristic velocity at
time t . Note the order of the limits: first limν→0 and then limt→∞. These limits do not
commute. See [7] for a recent discussion of the domain of validity of these asymptotic
behaviours. Each asymptotic universal statistics, which are specified by their correlation
functionsBn(xj/ l(t)), have their own basin of attraction.

If the initial statistics are Gaussian with zero mean, they are encoded in the initial
velocity two-point function0(x − y) = 〈u0(x)u0(y)〉 which we assume is translation
invariant. As is known since the work of Burgers, the large time behaviour depends crucially
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on whetherJ = ∫
dx 0(x) vanishes or not. The caseJ 6= 0 was the case first studied

by Burgers himself [1]. In this case the large time behaviour is governed by a self-similar
solution with characteristic lengthl(t) ∼ t2/3. The caseJ = 0 was analysed by Kida
in his important paper [2]. It is convenient to introduce the potential8(x, t) such that
u(x, t) = ∂x8(x, t). If J = 0, we may assume that the initial potential is Gaussian with
mean zero and the two-point function

G(x − y) = 〈80(x)80(y)〉. (3)

Of course0(x) = −∂2
xG(x). Assuminga priori that the minima of the initial potential are

independent, Kida showed in [2] that the large time behaviour has a characteristic length
l(t) ∼ t1/2 up to a logarithmic correction. A more precise formulation of this statement,
previously recorded in the physics literature (see [2, 5, 7] and references therein, and proved
in [6], see also [7]), under a very mild hypothesis onG(x), (e.g. forG(x) being a smooth
function decreasing rapidly), states that the following limit exists:

lim
ε→0
| logε| 12u

(
x

ε
,
t

ε2
| logε| 12

)
∼= uK(x, t). (4)

Here and in the following,∼= means an equality in law, i.e. inside any correlation functions.
The statistics of the limiting velocity fielduK(x, t) was explicitly constructed in [2, 6].
uK(x, t) is self-similar with a diffusive scaling,lK(t) = t1/211/4 where1 = G(0). Note
that one of the hypothesis for having Kida’s statistics at large time is that 0< 1 <∞, i.e.
that the initial potential two-point function is regular at the origin.

Asymptotic behaviours of solutions with non-Gaussian initial data have also been
considered in the literature. For example, [8] considers non-Gaussian initial data but whose
asymptotic large time behaviours may still be described by self-similar solutions with a
diffusive scalingl(t) ∼ √t . See [7] for an extended commented list of references.

In this paper, we shall construct other self-similar solutions of decaying Burgers
turbulence. Although these solutions differ from Kida’s statistics, they share in common
their construction from Poisson point processes. These solutions may be relevant in the
large time behaviour of systems whose initial correlation functions are singular at coinciding
points.

In section 2, we introduce a few basic facts concerning the Burgers equation and we
describe some universal features of fields localized on shocks. In section 3, we construct
the self-similar statistics and we prove that it is effectively a solution of the turbulent
problem. We also give some more detailed information on a particular case. Comments
and speculations are gathered in section 4.

2. Basic facts about the Burgers equation

In order to fix notations, we recall few elementary facts concerning the Burgers equation
[1, 2]. As is well known, the equation is solved by implementing the Cole–Hopf
transformation which maps it to the heat equation. This works as follows. LetZ(x, t) =
exp[− 1

2ν8(x, t)] where u(x, t) = ∂x8(x, t). Equation (1) foru is mapped into the heat
equation forZ:

[∂t − ν∂2
x ]Z(x, t) = 0.

Thus, given the initial conditionu(x, t = 0) ≡ u0(x), the velocity field at a later timet is
recovered from the potential8(x, t) given by the relation

exp

[
− 1

2ν
8(x, t)

]
=
∫

dy√
4πνt

exp

[
− 1

2ν

(
80(y)+ (x − y)

2

2t

)]
(5)
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with 80(x) standing for the initial potential such thatu0(x) = ∂x80(x). The invicid
Burgers equation corresponds to the limitν → 0. The solution is then given by solving a
minimalization problem:

u(x, t) = ∂x8(x, t) with 8(x, t) = min
y

(
80(y)+ (x − y)

2

2t

)
. (6)

Outside shocks the minimum is reached for only one valuey∗ of y, the solution of the
equationu0(y∗)t = x−y∗. The velocity isu(x, t) = x−y∗

t
= u0(y∗). It is effectively a local

solution of the invicid Burgers equation since, by the minimum condition definingy∗, we
haveu(x, t) = u0(x − tu(x, t)). A simple geometrical construction of the solution (6) is
described in [1, 2]. For larget , y∗ coincides approximately with one of the local minima
of 80(y) and it practically does not change under small variations ofx so that, inbetween
the shocks, the velocity is approximately linear with the slope1

t
.

Shocks appear when the minimum is reached for two valuesy1 and y2 of y. Let
81,2 = 80(y1,2) be the value of the initial potential at these points. Then equation (5)
allows one to determine the velocity profileus(x, t) around and inside the shocks at finite
value of the viscosityν by expressing exp

[− 1
2ν8s(x, t)

]
as the sum of contributions from

the two minima. One obtains

us(x, t) = 1

t

(
x − 1

2
(y1+ y2)

)
− µs

2t
tanh

(
µs

4νt

(
x − ξst − 1

2
(y1+ y2)

))
(7)

whereµs = y1− y2 > 0 andξs = 81−82
y1−y2

. In the invicid limit ν → 0, this becomes

us(x, t)|ν=0 = ξs +
x − xs(t)

t
− µs

2t
(θ(x − xs(t))− θ(xs(t)− x)) (8)

wherexs(t) = ξst + 1
2(y1 + y2) is the timet position of the shock which moves with the

velocity ξs and follows a Lagrangian trajectory.θ(x) is the step function. The values of
the velocity on the two sides of the shock are

u±s = us(xs ± 0) = ξs ∓ µs
2t

(9)

so thatµs
t

is the amplitude of the shock.
The presence of shocks is at the origin of universal features which are independent of

the details of the statistics. They may be analysed by looking at fields localized on the
shocks. By definition, these fields may be represented for any realization as

Og(x, t) =
∑

shocks

g(ξs, µs)δ(x − xs(t)) (10)

where the sum is over the shocks withxs(t) denoting the position of the shock,ξs its
velocity andµs

t
its amplitude. These fields are labeled by functions ofξs andµs . By using

the velocity profile (7) inside and around the shocks, we may map fields defined in terms of
the velocityu(x, t) into the shock representation. For example, the shifted derivative of the
velocity field (∂xu(x, t)− 1

t
) is for larget localized on the shocks since away from shocks,

u(x, t) = x−y∗
t

with y∗ almost independent ofx. More generally, the generating function
(∂x − λ

t
) exp[λu(x, t)] also becomes localized on the shocks for larget . Using the velocity

profiles (7) or directly (8), one finds its shock representation:(
∂x − λ

t

)
eλu(x,t) = −2

∑
s

eλξs sinh

(
λµs

2t

)
δ(x − xs(t)). (11)
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Note that this differs from the productsλ(∂xu(x, t)− 1
t
)eλu(x±0,t) which are evaluated using

the fact that the velocity on the two sides of a shock areu±s = ξs ∓ µs
2t :

λ

(
∂xu(x, t)− 1

t

)
eλu(x±0,t) = −λ

∑
s

µs

t
exp

[
λ
(
ξs ∓ µs

2t

)]
δ(x − xs(t)). (12)

Another example of a field localized on shocks is provided by the dissipation field
ε(x, t) defined byε(x, t) = limν→0 ν(∂xu)

2. As is well known,ε(x), which is naively zero
due to the prefactorν in its definition, is actually a non-trivial field since(∂xu)2 is singular
in the invicid limit. Integratingν(∂xus)2 around the shock one obtains in the limitν → 0
the contribution 1

12(
µs
t
)3. Hence the shock representation ofε(x) is:

ε(x) = 1

12

∑
s

(µs
t

)3
δ(x − xs(t)).

More generally one finds, using again the velocity profile (7), the shock representation of
the generating functionε(x, t)eλu(x,t). Namely

ελ(x, t) ≡ ε(x, t)eλu(x,t)

= 2λ−3
∑
s

eλξs
(
λµs

2t
cosh

(
λµs

2t

)
− sinh

(
λµs

2t

))
δ(x − xs(t)). (13)

Note that forν 6= 0, the Burgers equation (1) implies that

0=
(
∂t + λ∂λ 1

λ
∂x − λν(∂2

xu)

)
eλu =

(
∂t + λ∂λ 1

λ
∂x + λ2ν(∂xu)

2− ν∂2
x

)
eλu. (14)

Since∂2
xeλu has a (distributional) limit whenν → 0, we may expect that atν = 0(

∂t + λ∂λ 1

λ
∂x

)
eλu + λ2ελ = 0 (15)

encoding the invicid version of the Burgers equation. Indeed, equation (15) may be verified
directly atν = 0 by computing(∂t + λ∂λ 1

λ
∂x)eλu with the use of the limiting profile (8).

Comparison of equation (13) with equations (11) and (12) yields an alternative
representation of the dissipation field in terms of the velocity field:

ελ(x, t) = 1
2λ
−2(∂xu(x, t))(2eλu(x,t) − eλu(x+0,t) − eλu(x−0,t))

= 1
2λ
−2(eλu(x,t))(2∂xu(x, t)− ∂xu(x + 0, t)− ∂xu(x − 0, t)). (16)

Equation (16) is an extension of the well known formula

ε(x) = 1
12 lim

l→0
∂l [u(x)− u(x + l)]3.

As expected and manifested in equation (16), the dissipation field is located on the
discontinuity of the derivative of the velocity field. Equation (16) does not coincide with the
operator product expansion suggested in [9] for the forced Burgers turbulence and expressing
ελ as a combination of eλu and∂xeλu.

Fields localized on shocks form a closed algebra. When shocks are diluted, these
operators are expected to satisfy a simple operator product expansion:

Of (x, t) ·Og(y, t) = δ(x − y)Ofg(x, t)+ regular.

The contact termδ(x − y) in this operator product expansion arises from the coinciding
shocks in the double sum representing the product operator. As an application, let us
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present an argument showing that the structure functions scale linearly inx. Indeed, using
the representation (11) for the operator(∂x − λ)eλu(x,t) at t = 1, one finds

(∂x − λ)2〈eλ(u(x)−u(0))〉 = δ(x)〈Oϕ〉 + regular

with Oϕ(x) = 2
∑

s(cosh(λµs)− 1)δ(x − xs). By integrating, this implies

〈eλ(u(x)−u(0))〉 = 1+ a(λ)x + 〈Oϕ〉
2
|x| + o(|x|) (17)

with a(λ) = −a(−λ). Equation (17) implies that, at short distances,〈(u(x) − u(0))n〉 is
proportional to|x| for even positiven:

〈(u(x)− u(0))n〉 = 〈Oµn〉|x| + o(|x|)
and it is consistent with the behaviour proportional tox for odd n > 1, as the one holding
for the three-point function. In words, the anomalous scalings of the structure functions in
Burgers turbulence are a simple echo of the shocks. They are universal (at least when shocks
are diluted): only the amplitudes are statistics dependent. Some of these representations
and formal manipulations also apply to the forced Burgers equation.

3. Self-similar solutions

Self-similar behaviour such as in equation (2) will be true at any time, i.e. not only
asymptotically, if the initial correlation functions scale. Indeed, from the explicit solution
(6) it immediately follows that (for the Gaussian initial data)

G0(sx) = s2hG0(x) H⇒ s1−hu(sx, s2−ht) ∼= u(x, t). (18)

h is the dimension of the initial potential. Such scaling behaviour corresponds to a
characteristic lengthl(t) ∼ t 1

2−h . For this length to grow with time we must haveh < 2.
Shocks are expected to be dense for 1< h < 2 and diluted forh < 1 [3, 4].

Demanding a self-similar behaviour for the correlation functions imposes constraints on
the correlation functions of the velocity field:[

(2− h)t∂t +
∑
j

(xj ∂xj + (1− h)λj∂λj )
]〈∏

k

eλku(xk,t)
〉
= 0. (19)

One may construct self-similar solutions with scaling dimensionsh for 0 > h > −1
by generalizing the representation of Kida’s asymptotic solution [2]. By construction, the
velocity uh(x, t) has the following form:

uh(x, t) = ∂x8h(x, t) with 8h(x, t) = min
j

(
φj + (x − yj )

2

2t

)
(20)

where (φj , yj )j∈Z is a Poisson point process with intensityfh(φ) dφ dy. Recall that this
means that the probability to find a point of this process in an infinitesimal cell centered
at (φ, y) is fh(φ, y)dφ dy and that such elementary events are independent. To assure the
translation invariance,fh will depend only onφ. For any given realization, the velocity
field (20) has an exact sawtooth profile with slope1

t
. In this ansatz all shocks are created

at timet = 0. The later time evolution is then governed by the shock collisions: the largest
eating the smallest.

Let us first show that equation (20) is preserved by the evolution specified by the invicid
Burgers equation. At a timet ′ = t + τ > t , the velocity fielduh(x, t ′) is given by

uh(x, t + τ) = ∂x min
y

(
8h(y, t)+ (x − y)

2

2τ

)
.
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Inserting the expression (20) for8(y, t) and commuting the minimization overy and over
j ’s, we get:

uh(x, t + τ) = ∂x min
j

(
φj +min

y

(
(y − yj )2

2t
+ (x − y)

2

2τ

))
= ∂x min

j

(
φj + (x − yj )

2

2(t + τ)
)
.

Next we determine the intensityfh(φ) dφ dy such that the solution (20) is self-similar
with scaling dimensionh, i.e. s1−huh(sx, s2−ht) ∼= u(x, t). Let us spell out this condition
for the potential8h(x, t). By definition,

s−h8h(sx, s
2−ht) = min

j

(
s−hφj + (x − s

−1yj )
2

2t

)
= min

j

(
φ̂j + (x − ŷj )

2

2t

)
whereφ̂j = s−hφj and ŷj = s−1yj . Sinceuh(x, t) = ∂x8h(x, t), demanding self-similarity
amounts to require thats−h8h(sx, s

2−ht) ∼= 8h(x, t)−Cs with Cs a constant. This equality
will be true in law if the intensity is such that:fh(φ) dφ dy = fh(φ̂ + Cs) dφ̂ dŷ. Up to an
irrelevent translation ofφ the solutions of this equation are:

fh(φ) =
{

constantφ−(
1+h
h ) for φ > 0

0 for φ 6 0
with − 1< h < 0 (21)

f0(φ) = exp[constantφ] with h = 0. (22)

Thus we have shown that the representation (20) of the velocity field in terms of the Poisson
process(φj , yj ) with intensity (21) is (i) self-similar and (ii) preserved by the evolution.
In particular the relations such as equations (19) will be satisfied. Moreover the invicid
form (15) of the Burgers equation for each realization implies the Hopf equations for the
correlators: [

∂t +
∑
j

λj ∂λj
1

λj
∂xj

]〈∏
k

eλku(xk,t)
〉
+
∑
j

λ2
j

〈
ελj

∏
k 6=j

eλku(xk,t)
〉
= 0 (23)

The time derivative may be eliminated from both equations leading to the fixed-time version
of the Hopf equations. The caseh = 0 corresponds to Kida’s asymptotic solution. As
pointed out in [10] it generalizes the Gumbel class of extreme statistics. The caseh 6= 0
should, correspondingly, generalize the Weibull class of extreme statistics.

Let us describe in more detail the caseh = − 1
2. It corresponds to initial potential

correlation functions homogeneous of degree−1, e.g. like the Dirac delta function. We
denote by8∗(x, t) andu∗(x, t) the corresponding potential and velocity field. The statistics
of the Poisson point process(φj , yj ) in the representation (20) is specified by the intensity

f ∗(φ) =
{
D−1φ dφ dy for φ > 0

0 for φ 6 0.
(24)

D is a constant with dimension(length)5× (time)−2. Recall that the velocity fieldu∗(x, t)
is such thatu∗(x, t) ∼= t−3/5u∗(xt−2/5, 1). In other words, the characteristic length at time
t is l∗(t) = D1/5t2/5.

The one-point function of the potential scales ast−2/5 and thus diverges att = 0 (it
does not contribute to the one-point function of the velocity which vanishes). The two-point
function G∗(x, t) of 8∗(x, t) satisfiesG∗(x, t) = t−2/5G∗(xt−2/5, 1). Since, as we shall
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see,G∗(x, 1) is smooth, regular at the origin and decreasing exponentially at infinity, at
zero timeG(x, t) becomes proportional to the Dirac delta function,

lim
t→0

G∗(x, t) = constantδ(x).

Once the velocity field has been parametrized in terms of Poisson processes as in
equation (20), it is easy to compute any correlation functions. For example, the one-point
generating function is

〈eλu∗(x,t)〉 =
∫

dφ dy Px(φ, y)eλ(x−y)/t

with Px(φ, y) denoting the probability (density) of(φ, y) = (φj∗ , yj∗) for j ∗ minimizing(
φj + (x−yj )2

2t

)
. To compute this probability, imagine dividing the(φ, y)-plane into

elementary cells of size dφ dy with the probability for a point(φj , yj ) to be in the cell centred
at (φ, y) equal tof (φ) dφ dy. Thus, the probabilityPx(φ, y) is equal to the product of the
probability for the elementary cell centred around(φ, y) to be occupied by a point of the
process times the probability for the other cells around(φ′, y ′) s.t. φ′ + (x−y ′)2

2t < φ+ (x−y)2
2t

to be empty (if this condition is violated, the cell around(φ′, y ′) may be either occupied or
empty). Hence

Px(φ, y)dφ dy = f (φ) dφ dy
∏

dφ′ dy ′
(1− χ(φ′, y ′;φ, y)f (φ′) dφ′ dy ′)

whereχ(φ′, y ′;φ, y) is the characteristic function of the constraintφ′+ (x−y ′)2
2t < φ+ (x−y)2

2t .
Taking the continuum limit of infinitesimal cells and approximating the product over the
cells around(φ′, y ′) by the exponential of a sum leads to the result:

〈eλu∗(x,1)〉 =
∫

dφ dy e−λyf
(
φ − y

2

2

)
exp

[
−
∫

dz
∫ φ− z2

2

−∞
dφ′ f (φ′)

]
= 2

|λ|5
∫ ∞

0
dXX(X coshX − sinhX) exp[− 2

15(X/|λ|)5]. (25)

We have sett = 1 andD = 1. The dependence on these parameters is restored by
replacingλ by λD1/5t−3/5. One may check directly that the above expression for the one-
point function satisfies the identities (19) and (23).〈eλu∗(x,1)〉 is regular aroundλ = 0 and
its behaviour at infinity is:

〈eλu∗(x,1)〉 ' constant|λ|−15/8 exp[+constant|λ|5/4] for λ→∞. (26)

This has to be compared with Kida’s statistics for which〈eλu∗(x,1)〉 = exp[+constantλ2].
The two-point functions can be computed similarly. Forx > 0,

〈eλ(u∗(x)−u∗(−x))〉 = e2λx
∫
φ>0

dφ dy [φ + 2xJλ(φ; y; x)Jλ(φ;−y; x)] e−I0(φ;y;x)−I0(φ;−y;x)

(27)

with

Jλ(φ; y; x) =
∫
D

dz(φ + 1
2(x + y)2− 1

2z
2)eλ(z−x)

I0(φ; y; x) = 1
2

∫
D

dz(φ + 1
2(x + y)2− 1

2z
2)2



8742 D Bernard and K Gaw¸edzki

where the domain of integration in both cases isD = {z | z 6 y + x; z2 6 2φ+ (y + x)2}.
As it should be, equation (27) gives structure functions which scale linearly inx at small
distances:

〈(u(x)− u(0))n〉 ∝ x + · · ·
for any positive odd integern. For n even the structure functions are linear in|x|. At large
distances, the structure functions〈(u(x)−u(0))n〉 decrease faster thanBn|x|σn exp(−An|x|5)
with An,Bn andσn somen-dependent constants. Equation (27) may be used to check that
for t 6= 0 the two-point functionG(x, t) is smooth, fast decreasing at infinity and regular
at the origin. There are no difficulties, but not much motivation, to compute in the same
way the higher-point correlation functions.

4. Comments and speculations

We have constructed self-similar solutions of the decaying Burgers turbulence. It is natural
to wonder if such statistics effectively describe the long time behaviour of systems with
smooth random initial data. One may construct such examples in a tautological way by
taking as initial data the potential8η

0(x) obtained from the self-similar ansatz (20) at small
but non-zero time:8η

0(x) = 8h(x, η) with η 6= 0. By construction, it defines a smooth
initial statistics which will have a large time asymptotics given by8h(x, t). Of course, this
initial statistics is not Gaussian. This shows, however, that the basin of attraction of the
self-similar solution (20) is not totally empty.

In the caseh = − 1
2 the two-point function of8η

0(x) tends to the Dirac delta function
δ(x − y) when η → 0. So the initial statistics8η

0(x) may be thought of as a way to
regularize an initial potential withδ(x − y) two-point correlation function. Note that if we
replaceδ(x − y) by a smooth cut-off dependent function1(x − y), the values at the origin
1(0) diverge with the cut-off and Kida’s asymptotic regime disappears in the limit since
its characteristics length diverges.

The question is then whether there exist analogues of equation (4) but with different
respective scaling betweenx andt corresponding to non-zero values ofh. For example one
may inquire about the existence of the limit

8∗∗(x, t) ≡ lim
ε→0

1

ε1/2
8

(
x

ε
,
t

ε5/2

)
. (28)

Naively, it corresponds to a limiting initial potential withδ(x − y) correlation function.
Indeed, upon assuming that miny and limε→0 commute, it follows from equation (6) that

lim
ε→0

1

ε1/2
8

(
x

ε
,
t

ε5/2

)
= lim

ε→0

1

ε1/2
min
y

(
8(y)+ ε5/2 (xε

−1− y)2
2t

)
= min

y

(
8∗∗0 (y)+

(x − y)2
2t

)
(29)

where8∗∗0 (x) ≡ limε→0
1
ε1/28(

x
ε
) is the rescaled initial potential with the two-point function

G∗∗(x) ≡ limε→0
1
ε
G(x

ε
) = D̄δ(x) with D̄ = ∫ dx G(x). It has dimensionh = −1

2. Such a
limit (28) would correspond to an intermediate regime with characteristic lengthl∗(t) ∼ t2/5
smaller than Kida’s lengthlK(t) ∼ t1/2. The problem is, however, that the realizations of
the white noise8∗∗0 are distributional and that the last expression in (29) is ill defined.
Clearly a finer analysis is required to decipher cases in which a limit of the type (28) leads
to a self-similar asymptotic distribution withh = − 1

2 as the one constructed above. In fact,
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we expect the latter to appear if the initial potentials have values uniformly bounded below,
in analogy with the extreme statistics problem.

Identical constructions, arguments and speculations could be conducted in higher
dimensions. For example, in dimensiond the delta function has dimensionh = − d

2 ,
and there exists a self-similar solution with this scaling dimension. It corresponds to the
characteristic lengthl(t) ∼ tα with α = 2

d+4.
Finally, we feel that it could be worthwhile to adapt the renormalization group techniques

to analyse this type of large time behaviour.
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